4.6 Arithmetic Sequences

Learning Target:

I can identify patterns of arithmetic sequences and geometric sequences.

Success Criteria:

- I can write the terms of arithmetic sequences
- I can graph arithmetic sequences
- I can write arithmetic sequences as functions

Sequence: an ordered list of <u>NUMbers</u>, called <u>terms</u>; notation- <u>Qp</u>.

Each term has a specific position n in the sequence. α_1 α_2 α_3

4, 8, 12, ..., an

Arithmetic sequence: the difference between each pair of Consecutive terms is the same. This is known as the <u>COMMON</u> <u>difference</u>. Each term can be found by adding the <u>COMMON</u> difference to the previous term.

I can write the terms of arithmetic sequences

Example 1: Write the next three terms of the arithmetic sequence.

a. -2,6,14,22,<u>30,38,46</u>

c. You try: 40,44,48,52,56,60,64

b. 3,0,-3,-6,<u>-9</u>,<u>-12</u>,-<u>15</u>

d. You try: 0.5, 1, 1.5, 2, 1 +0.5 +0.5 +0.5

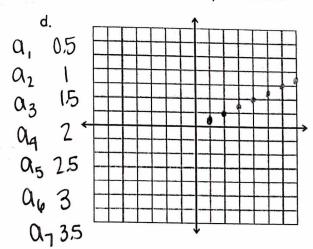
I can graph arithmetic sequences

Example 2: Graph the arithmetic sequences from parts b and d above. What do you notice?

b. 3 a. a_{2} 0 a₃ 05 -9 ab -12

9

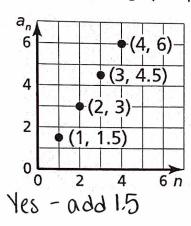
15



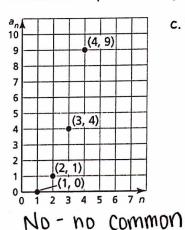
4.6 Arithmetic Sequences

Example 3: Does the graph represent an arithmetic sequence? Explain.

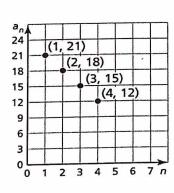
a.



b.



c. You try:



Yes-subtract 3

I Can Write Arithmetic Sequences as Functions

Since consecutive terms in an arithmetic sequence have a common different, the sequence has a Constant rate of change.

Position, n	Term, an	Written using a1 and d	Numbers
1	first term, a,	α_1	4
2	second term, az	aitd	7
3	third term, az	a,+2d	ID
4	fourth term, a4	0,+3d	13
		:	;
n	n+n term, an	$\alpha_1 + (n-1)d$	ai+(n-1)d
	' - d	0.50	+(n-1)2

From this, we have the equation for an arithmetic sequence: $\frac{(n-1)d}{d}$

Example 4: Write an equation for the nth term of the arithmetic sequence 7, 3, -1,-5, ... Then find a₃₀. 0 = 1 + (n-1)(-4) 0 = -4(30) + 11 0 = 4 - 4 - 4

$$a_{n}=7+(n-1)(-4)$$
 $d=-4$
 $a_{n}=7-4n+4$
 $a_{n}=-4n+11$

$$Q_{30} = -4(30) + 11$$

difference

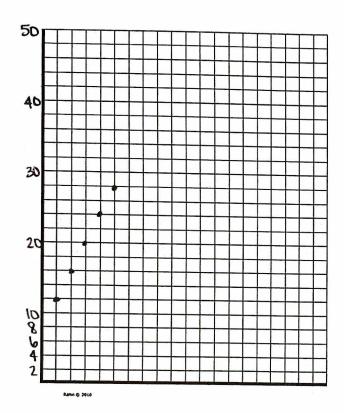
You try: Write an equation for the nth term of the arithmetic sequence 1, 0, -1, -2, ... Then find a_{51} . $0_1 = 1 + (n-1)(-1)$ $0_{51} = -51 + 2$

The equation for an arithmetic sequence can also be written using function notation by replacing $\frac{\Omega_n}{\Omega_n}$ with f(n)

4.6 Arithmetic Sequences

Example 5: Juan saves \$12 the first week of the year. He will increase the amount he saves each week by \$4.

- Write a function that represents the arithmetic sequence. $\frac{0_n-12+(n-1)4}{0_n-12+4n-4}$ b. Graph the function. $\frac{0_n-12+4n-4}{0_n-4n+8}$



28

c. Juan's goal is to save \$68 in one week. In which week will be save that amount? 15

in 121 /

$$\frac{60=4n}{4}$$

6.6 Geometric Sequences

Learning Target

• I can identify patterns of arithmetic sequences and geometric sequences.

Success Criteria

- I can identify geometric sequences.
- I can extend and graph geometric sequences
- I can write geometric sequences as functions.

I can identify geometric sequences

<u>Geometric Sequence</u>: a sequence in which the \underline{YMD} between each pair of consecutive terms is the \underline{SOMC} . The ratio is known as the \underline{COMMON} Detween each pair of consecutive terms is the by to get the next term.

Example 1: Determine whether each sequence is arithmetic, geometric, or neither. Explain.

I can extend and graph geometric sequences

Example 2: (You try) Write the next three terms of each geometric sequence.

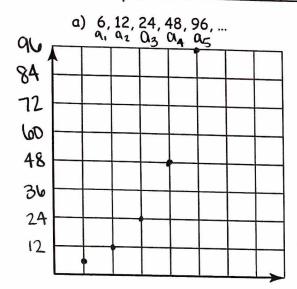
c)
$$16,12,8,4,0,-4,-8$$
 *arithmetic

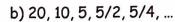
6.6 Geometric Sequences

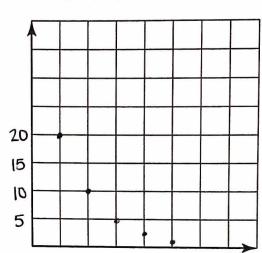
I can extend and graph geometric sequences (cont.)

Example 3: Graph each geometric sequence. What do you notice?

exponential function







I can write geometric sequences as functions

Position, n l 7	Term, an first term, an	Written using a1 and r A1	Numbers (Let $a_1 = 1$, $r = 4$)
3	second term, a_2 third term, a_3 fourth term, a_4	9, r 0, r.r = a, r ² 9, r.r.r = a, r ³	4 16 64
? N	nth term, an	a,rn-1	1(4) ⁿ⁻¹

From this, we have the equation for the nth term of a geometric sequence: (n-1)

Example 4: Write an equation for the nth term of the geometric sequence 3, 12, 48, 192, ...

Then find a_{10} . $\alpha_{10} = 3(4)^{n-1}$ $\alpha_{10} = 3(4)^{n-1}$ $\alpha_{10} = 3(4)^{n-1}$

$$\alpha_{n} = 3(4)^{n}$$

$$n = 3(4)^{10-1}$$

$$a_{10} = 3(4)$$

$$\frac{\alpha_{10} - 3(4)}{\alpha_{10} = 786432}$$

You try: Write an equation for the nth term of the geometric sequence 13, 26, 52, 104, ... Then find a_{10} .

$$Q_{10} = 13(2)^{-1}$$

6.6 Geometric Sequences

I can write geometric sequences as functions (cont.)

Note: You can write a geometric sequence in function notation by replacing n with f(n).

Example 5:

An archery competition begins with 256 competitors. After the first round, one-fourth of the competing group remains. After the second round, one-fourth of the now smaller competing group remains. The last round is when there are fewer than five members in the competing group.

a. Which round is the last round?

α,	256
Q_2	64
0,3	16

$$a_{n}=256(\frac{1}{4})^{n-1}$$

b. How many competitors are in the last round?

4

You try: A digital city map displays an area of 544 square units. After you zoom in once, the area is 272 šquare units. After you zoom in a second time, the area is 136 square units. What is the area after you zoom in five times?

$$a_1 = 544$$
 $a_2 = 272$

$$a_{n} = 544 \left(\frac{1}{2}\right)^{n-1}$$

17 sq mi