6.3 Exponential Functions

Class Example

Graph f(x) = (2)*. Answer the questions below. Describe the domain and range of f.

x ]y Tt o R
2 |1
1] ] >
o ||\ / ‘\R'\jo
1 |1
2 [ 4

<l S

What pattern exists in the table? Y1V HWO\u bu 7
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What is the y-intercept?

Group Example

Graph f(x) = -(2) . Answer the questions below. Describe the domain and range of f.
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What pattern exists in the table? N\ \h 0\3 b\ Jl A

What is the y-intercept? ~|

What is similar to the class example? Table: My H\p “ \Ou 2

Graph: t S“OD@

What is different from the class example? Table: 0\\ V\eq(rh e

Graph: ‘(QE\GCHO(\ "’i’D(’ OD((\Q 'r\
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6.3 Exponential Functions
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Summary of Graphing Exponential Functions
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Criterion B: Investigating Pattern Rubric

Assessing ii) Describe patterns as general rules consistent with findings

Achievement Level
0
1-2 State predictions consistent with patterns about graphing exponential functions and its
The student is able to: | properties.

3-4 Suggest general rules consistent with findings about graphing exponential functions and
its properties.

5-6 Describe patterns between the tables and graphs of exponential functions as general
rules consistent with findings to create a summary of the relationships that is mostly
correct.

7-8 Describe patterns between the tables and graphs of exponential functions as general
rules consistent with correct findings to create a summary of the relationships.
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6.3 Exponential Functions T

Exponential Functions

y = ab*
Transformations of Exponential Functions
y=ab*h+k
a h k
U-tvtercept +h = lef+ > up
V ’ _
h—=> (\g“’f k-7 down
Domain: R
Range: >k
Identifying functions
Does each table represent a Jinear or an exponential function? Explain. +4& 14 14
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Evaluating Exponential Funcﬁons( U‘\C 3 L (\\”\i‘-\j L
Evaluate each function for the given value of x. PEM AS > WS
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1) y:—2(5)";3x=3 2)y=3(05); x=-2 \
y=-2() =3(05)”
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Writing Exponential Furfetions \j— ) U= n_\

An exponential functiof g models a relationship where the y-values are multiplied by 1.5 for every 1 unit
the x-values indreases /and g(0) = 4. Write an equation that represents the function. Graph the function
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6.3 Exponential Functions

You-Try:
An eXx i i
exponential function jg models a relationship where the y-values are multiplied by 2 for every 1 unit

— —

the x-values -
e X-values '",Crf‘eﬂse. d g(0) = 3. Write an equation that represents the function. Graph the function
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xample 7: Modeling with Mathematics Bacterial Population
The graph represents a bacterial population y after x days. so:“ 1]
4,768
a) Werite an exponential function that represents the population. 08 ( :
mulhp\(fﬁ bH 4 — b=4 X '§ sgg |
a=3 9: 3(4) é 400 /
S 300 ©0.3)] 1/
* oo (1 12)
' _ 200 L= (3, 192)
b) Find the population after 12 hours and after 5 days. 10073 453)
IthUfS"‘ 5d0‘d§"”x:5 8123456 7x
Y=3(4)" : Bay
You try: BZb

A bacterial population y after x days can be represented by an exponential function whose graph passes
through (0, 100) and (1, 200).

a) Write a function fhg*r_mseyfsjpopulaﬂon.
=100 - X
) [y=100(2)

b) Find the population after 6 days.
= too(2)° M: 6400 |

¢) Does this bacterial population grow faster than the bacterial population in the previous example?

Explain.
No-4he base 18 2 in s example &>« dodbles
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6.4 Exponential Growth and Decay

Learning Target:

* I cangraph exponential functions and solve exponential equations.

Success Criteria:

* I canuse and identify exponential growth and decay functions.
* I caninterpret and rewrite exponential growth and decay functions.
I can solve real-life problems involving exponential growth and decay.

Exponential Growth: -m,“m “;——/-—(&"C (03 QG C\Q(.h'l\(,\\)
\ ==
oo Y = a(l + r)' <y

Exponential Decay: Hme

y =a(l - r)

Example 1: Identifying Exponential Growth and Decay

Determine whether each table represents an exponential growth function, an exponential decay function,
or neither.
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Example 2: Writing Exponential Functions

The inaugural attendance of an annual music festival is 80,000. The attendance y increases by,6% each

(i) fe)
year. 3
a) Write an exponential func{ion that repr sen-’rsr-'rhe—-a‘rfcndanckeﬁ‘offer t years.
a: %0,00()0 4 .O(o) 1 -Q0 GOUK [_{\gg‘;,
b) How many people will attend the fesTivql_'@@;Lear?‘an&your answer the nearest thousand.

y=§0000 (106" Y=101058 pecrte

You purchase a car for $25,000. The value of a car depreciates by &9% each yearyy {r;
a) Write an exponential fun,c(:ﬁon that represents the value affer x years.
= 25000(] - .15) y=25000(0.%5)

b) How much will the car be worth after 4 years?

\5:1‘5000 (.%5)4 m




6.5 Solving Exponential Equations

Learning Target

* T cangraph exponential functions and solve exponential equations.
Success Criteria

* I can solve exponential equations with the same base
¢ I can solve exponential equations with unlike bases
» T cansolve exponential equations by graphing

I can solve exponential equations with fhe'sume base

Let's learn this process through an example:
1) 22* =26 *Note the variable is in the exponent! There is only one way this can be true....

2-_)_(.:&9_ ...the exponents must be equal!
21 L
]

2) 52:—:_-;.1 3) 73x+5 — 7x+1
7,bfl | 2945 - Y| % 4
X F

2x+3; | \--
T can solve exponential equations with unlike bases

—l}

These take a bit more work, we need to make the bases the same before we set exponents equal

1) 4% = 256 2) G5 = b 3) 43% = g¥+1 bty
X_44 202x)  AXA 2(3x) 3(X41
4°=4 5723 . £55=0

o 202x)= X 20ax) = 3 (x40

4% = -6 in; 1)
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1)2* =64 2) 7575 = 49% 3) 64%+* = 16°*
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6.5 Solving Exponential Equations

Let's add another challenge..what happens when the base is a fraction!

SO =2
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You try
1) (%)x =125 2) 36~3x+3 — (%)x_l
- 5 2(-3 -1 {(x-1)
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x% =3 2(-3x+2) =1 (x-0)
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I can solve exponential equations by graphing “: - ‘5)( j\
i I -
Make sure you have your graphing calculator! 2?}_
X=3 6 5 1\* —
1)2% = 1.8 2)4%3 = x +2 3)(3) =-2x-3

(X=0.55 | ESET [no solutton |

| =423

You try:

1) 6¥+2 = 12 (@) == Do =2xts
|*=~0.b| N0 SoWwAioN b"‘;{; "‘~L-x\..“\\n.:--\\:;\




