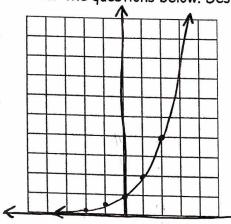
Class Example

Graph $f(x) = (2)^x$. Answer the questions below. Describe the domain and range of f.

×	
-2	4
-1	1/2
0	1
1	2
2	4



D:	R		
٠.			

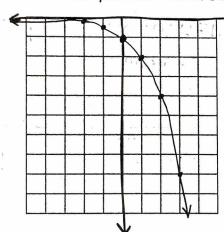
What pattern exists in the table? Multiply by 2

What is the y-intercept?

Group Example

Graph $f(x) = -(2)^x$. Answer the questions below. Describe the domain and range of f.

X	у
-2	-4
-1	$-\frac{1}{2}$
0	-1
1	-2
2	-4



D: _	R			

What pattern exists in the table? MUHiply by 2

What is the y-intercept? $\frac{-1}{}$

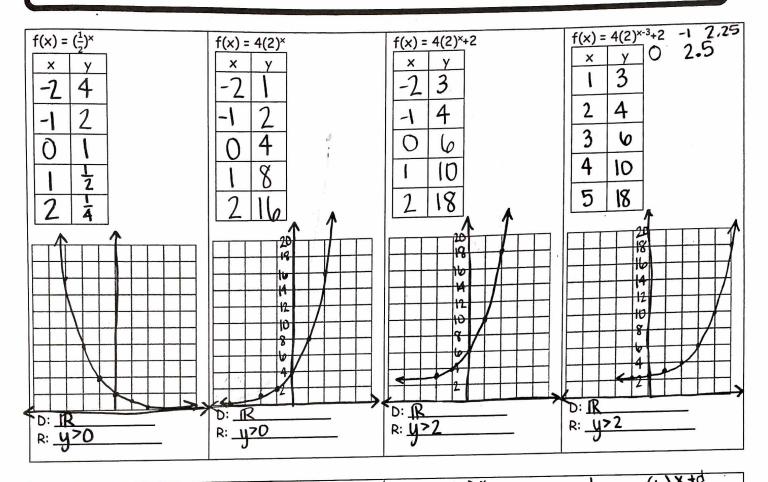
What is similar to the class example? Table: MUHIPLY by 2

Graph: Shape

What is different from the class example? Table: all negative

Graph: reflection > top going up

bottom going down



y=a(b)^	J-C - Shifts Up	y=a(b)x=0 +d→shiftsleft -d→shiftsright
multiplied by b>1 > increases b<1 > decreases	Domain: IR Range	e: y>d

Criterion B: Investigating Pattern Rubric

Assessing ii) Describe patterns as general rules consistent with findings

Achievement Level	
0	
1-2	State predictions consistent with patterns about graphing exponential functions and its
The student is able to:	properties.
3-4	Suggest general rules consistent with findings about graphing exponential functions and
	its properties.
5-6	Describe patterns between the tables and graphs of exponential functions as general rules consistent with findings to create a summary of the relationships that is mostly
7.0	Describe patterns between the tables and graphs of exponential functions as general
7-8	rules consistent with correct findings to create a summary of the relationships.

Exponential Functions

$$y = ab^{x}$$

Transformations of Exponential Functions

$$y = ab^{x-h} + k$$

a	h	k
y-intercept	th → left	+k->up
V.	-h→right	-k-> down

Domain: 1K

Identifying functions

Does each table represent a linear or an exponential function? Explain.

1)

exponential -

2)

linearconstant rate of Change

Evaluating Exponential Functions (ate 15 1

Evaluate each function for the given value of x. $PEMDAS \rightarrow exponents$ before

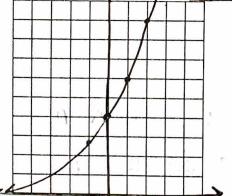
1) $y = -2(5)^x$; x = 32) $y = 3(0.5)^x$; x = -2Multiplication

1)
$$y = -2(5)^x$$
; $x = 3$
 $y = -2(5)^3$
 $y = -2(125)$
Writing Exponential Functions

2)
$$y = 3(0.5)^x$$
; $x = -2$

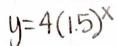
$$y=3(0.5)^{-2}$$

An exponential function g models a relationship where the y-values are multiplied by 1.5 for every 1 unit the x-values in greases and g(0) = 4. Write an equation that represents the function. Graph the function



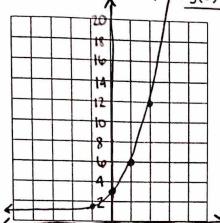
X	У	α=
-1	2.6	h=
0	4	U
1	6	
2	9	
3	13.5	. /

$$0=4$$



You-Try:

An exponential function g models a relationship where the y-values are multiplied by 2 for every 1 unit the x-values increase, and g(0) = 3. Write an equation that represents the function. Graph the function



×	У
-1	1.5
0	3
1	6
2	12
3	24

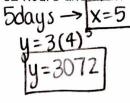
$$a=3$$
 $y=3(2)^{x}$ $b=2$

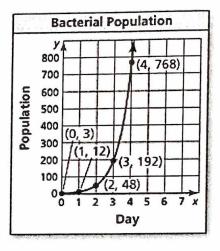
Example 7: Modeling with Mathematics

The graph represents a bacterial population y after x days.

- a) Write an exponential function that represents the population. multiplies by 4 -> b=4 $y = 3(4)^{x}$ a=3
- b) Find the population after 12 hours and after 5 days. 12 hours - | x=0.5 |

$$y=3(4)^{0.5}$$
You try: $y=6$





A bacterial population y after x days can be represented by an exponential function whose graph passes through (0, 100) and (1, 200).

a) Write a function that represents the population.

0=100 b=2

b) Find the population after 6 days.

y=100(2)6

c) Does this bacterial population grow faster than the bacterial population in the previous example? Explain.

No-the base is 2 in this example so it doubles

where in the previous example the base is 4 so its

quadrupled.

6.4 Exponential Growth and Decay

Learning Target:

I can graph exponential functions and solve exponential equations.

Success Criteria:

- I can use and identify exponential growth and decay functions.
- I can interpret and rewrite exponential growth and decay functions.
- I can solve real-life problems involving exponential growth and decay.

Exponential Growth:

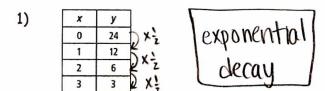
initial
$$y = a(1 + r)^{+}$$
 rate (as a decimal)

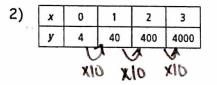
Exponential Decay:

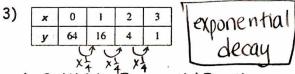
$$y = a(1 - r)^{\dagger}$$

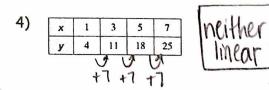
Example 1: Identifying Exponential Growth and Decay

Determine whether each table represents an exponential growth function, an exponential decay function, or neither.









Example 2: Writing Exponential Functions

The inaugural attendance of an annual music festival is 80,000. The attendance y increases by 6% each ,06 year.

a) Write an exponential function that represents the attendance after t years.

4=80,000(1+.06)x

 $y=80,000(14.06)^{2}$ $y=80000(1.06)^{4}$ b) How many people will attend the festival in the 5th year? Round your answer the nearest thousand.

y=80000(1.06)5 y=107058 people

You purchase a car for \$25,000. The value of a car depreciates by 15% each year 15

a) Write an exponential function that represents the value after x years.

y= 25000(1-.15)^ u = 25000(0.85)

b) How much will the car be worth after 4 years?

y=25000 (.85)4

6.5 Solving Exponential Equations

Learning Target

I can graph exponential functions and solve exponential equations.

Success Criteria

- I can solve exponential equations with the same base
- I can solve exponential equations with unlike bases
- I can solve exponential equations by graphing

I can solve exponential equations with the same base

Let's learn this process through an example:

*Note the variable is in the exponent! There is only one way this can be true.... 1) $2^{2x} = 2^6$

$$\frac{2X = 6}{2}$$

$$2X = 5x + 1$$

$$2X = X + 1$$

$$-X = X + 1$$

2)
$$5^{2x} = 5^{x+1}$$

2X = X+1

-X -X

I can solve exponential equations with unlike bases

$$\frac{2X = -4}{2}$$

$$X = -2$$

....the exponents must be equal!

These take a bit more work, we need to make the bases the same before we set exponents equal

1)
$$4^{x} = 256$$

 $4^{x} = 4^{4}$
 $x = 4$

2)
$$9^{2x} = 3^{x-6}$$

 $3^{2(2x)} = 3^{x-1}$
 $2(2x) = x - b$
 $4x = x - b$
 $-x - x$
 $3x = -b$
 $3x = -2$
2) $7^{x-5} = 49^x$

3)
$$4^{3x} = 8^{x+1}$$

$$2^{2(3x)} = 2^{3(x+1)}$$

$$2(3x) = 3(x+1)$$

$$6x = 3x+3$$

$$-3x - 6x$$

$$\frac{3}{3} = \frac{3}{3} = x - 1$$
3) $64^{2x+4} = 16^{5x}$

$$4^{3(2x+4)} = 4^{2(5x)}$$

$$3(2x+4) = 2(5x)$$

$$6x+12 = 10x$$

$$-6x$$

$$-6x$$

$$12 = 4x$$

You try:

1)
$$2^{x} = 64$$

 $2^{x} = 2^{b}$
 1×2^{b}

6.5 Solving Exponential Equations

Let's add another challenge...what happens when the base is a fraction!

1)
$$\left(\frac{1}{3}\right)^{x-1} = 27$$

 $3^{-1(x-1)} = 3^{3}$
 $-1(x-1) = 3$
 $-x+y=3$
 $-(x-1) = 3$

$$\frac{-X-2}{\text{You try:}}$$

1)
$$\left(\frac{1}{2}\right)^x = 125$$

1)
$$\left(\frac{1}{5}\right)^x = 125$$

$$5^{-1}(x) = 5^3$$

2)
$$\frac{1}{128} = 2^{5x+3}$$

 $2^{-7} = 2^{5x+3}$
 $-7 = 5x+3$
 -3
 $-10 = 5x$
 5

$$2) 36^{-3x+3} = \left(\frac{1}{6}\right)^{x-1}$$

$$6^{2(-3x+3)} = 6^{-1(x-1)}$$

$$-10x + 10 = -1x + 1$$

$$3) \left(\frac{1}{4}\right)^x = -2x - 3$$

no solution

I can solve exponential equations by graphing

Make sure you have your graphing calculator!

1)
$$2^x = 1.8$$

2)
$$4^{x-3} = x + 2$$

$$X=-1.999$$

 $X=4.33$

You try:

1)
$$6^{x+2} = 12$$
 $\chi = -0.6$

$$\frac{2)\left(\frac{1}{2}\right)^{7x+1} = -9}{100 \quad Solution}$$

3)
$$2^{x+6} = 2x + 5$$
NO SOLUTION