7.4 Solving Polynomials in Factored Form

Learning Target:

· I can solve a quadratic equation.

Success Criteria:

- I can use the Zero-Product Property.
- · I can factor polynomials using the GCF.
- I can use the Zero-Product Property to solve real-life problems.

I can use the zero- product property.

A polynomial is in <u>factored</u> form when it is written as a <u>product</u> of factors

Standard Form $2x^2 + 5x + 2$

Factored Form
(x+2)(2x+1)

*Use the Zero-Product Property when: One side of equation is in factored form (paventheses) + other side is equal to 0

Examples: Solve each equation.

1)
$$3x(x-6)=0$$

 $3x=0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$
 $3 = 0$

2)
$$(x+5)(x-4)=0$$

 $x+5=0$ $x-4=0$
 $x=-5$ $x=4$

You-Try: Solve each equation.

1)
$$x(x-1) = 0$$

 $X = 0$
 $X = 0$
 $X = 1$
 $X = 1$

7.4 Solving Polynomials in Factored Form

When two or more roots of an equation are the same number, the equation has replated voots Examples: Solve each equation.

1)
$$(4x+5)(4x-5)=0$$

 $4x+5/=0$ $4x-5/=0$
 $-5/-5$ $+5/-5$
 $4x=-5/4$ $4x=-5/4$
You-Try: Solve each equation. $x=1.25$

1)
$$(a+5)(a-2)(a-7)=0$$

 $0+5=0$ $0-2=0$ $0-7=0$
 $-5-5$ $+/2+2$ $+/1+7$
 $0=-5$ $0=7$

I can factor polynomials equations using the GCF.

To solve a polynomial equation using the Zero-Product Property, you may need to <u>Factor</u> the polynomial, or write it as a product of polynomials. Look for the GCF or areatest common factor of the terms of the polynomial. (This is a monomial that divides evenly into each term.)

reverse distributive

*Review: Greatest Common Factor = <u>Nighest # they and be divided by</u>
What is the greatest number that you can divide each set of terms by?

$$x^{5}, x^{3}, x^{2}$$

6) x^5 , x^3 , x^2

List the greatest common factor of the following terms:

1)
$$8x + 16$$

 $8(x + 2)$

3)
$$4x^3 + 8x^2 + 16x$$

 $4x(x^2 + 2x + 4)$

7.4 Solving Polynomials in Factored Form

Examples: Solve the following equations by factoring out the GCF.

1)
$$4x^{2}+12x=0$$

 $4x(x+3)=0$
 $4x=0$ $x+3=0$
 $4=0$ $x=-3$

You-Try: Solve the following equations.

2)
$$a^{2} + 7a = 0$$

 $a(a+7)=0$
 $a=0$ $a+7=0$
 $a=0$ $a+7=0$
 $a=7$

2)
$$-106^{2} = 8a$$

 $+10a^{2} + 10a^{2}$
 $10a^{2} + 8a = 0$
 $2a(5a + 4) = 0$
 $\frac{2a=0}{2}$ $5a+4=0$
 $\frac{2}{2}$ $5a=-4$
 $0=0$ $0=-0.8$

2)
$$3s^2 - 9s = 0$$

 $3s(s-3) = 0$
 $3s(s-3) = 0$

3)
$$10x^3 = 15x^2$$

 $-15x^2 - 15x^2 = 0$
 $5x^2 (2x - 3) = 0$
 $5x^2 = 0$ $2x - 3 = 0$
 $x^2 = 0$ $2x = 3$
 $x = \sqrt{0}$
 $3) 4x^2 = 2x \times 0$
 $-2x - 7x$
 $4x^2 - 2x = 0$
 $2x - 1 = 0$

You can model the arch of an entrance to a train tunnel by using the equation $y = -\frac{5}{16}(x+8)(x-8)$, where x and y are measured in feet. The x-axis represents the at ground level. $0 = -\frac{5}{10} (x+8)(x-8)$

You-Try: You can model the entrance to a mine shaft using the equation $y = -\frac{1}{2}(x+4)(x-4)$, where x and y are measured in feet. The x-axis represents the ground. Find the width of the entrance at ground level. $0 = -\frac{1}{2}(x+4)(x-4)$

$$x+4=0$$
 $x-4=0$ $x=4$

Closure: What I learned today was...

7.5 Factoring $x^2 + bx + c = 0$

Learning Target:

I can solve a quadratic equation.

Success Criteria:

- I can factor x² + bx + c.
- I can use factoring to solve real-life problems.

I can factor $ax^2 + bx + c$.

Writing a polynomial as a product of factors is called $\underline{-fathorg}$.

To factor $ax^2 + bx + c$, you need to find p and q such that $\underline{p+q-b}$ $\underline{p+q-c}$.

Before you can factor an equation, the equation must be PAVAL TO

Factoring x^2 + bx + c, when b and c are positive

Example: Factor each polynomial.

1)
$$x^2 + 10x + 16$$

 $Q = 1$ $b = 10$ $c = 16$

2)
$$x^{2} + 7x + 6 = 0$$

 $0 = 1$ $b = 7$ $c = 6$ $\sqrt{7}$
 $(x + 6)(x + 1) = 0$
 $x + 6 = 0$ $x + 1 = 0$
 $x + 6 = 0$ $x + 1 = 0$
 $x + 6 = 0$ $x + 1 = 0$
 $x + 6 = 0$ $x + 1 = 0$
 $x + 6 = 0$ $x + 1 = 0$
 $x + 6 = 0$ $x + 1 = 0$

You-Try: Factor the polynomials.

1)
$$x^2 + 9x + 8 = 0$$
 $C = 8$ 8 9 $(X+8)(X+1)=0$

2)
$$x^{2} + 9x + 14$$

 $0 = 1$ $b = 9$ $c = 14$
 $(x+7)(x+2)$

7.5 Factoring $x^2 + bx + c = 0$

Factoring $x^2 + bx + c$ when b is negative and c is positive

Example: Factor the polynomial.

1)
$$x^{2}-8x+12=0$$

 $Q=1$ $b=-8$ $C=12$ -6 -8
 $(X-6)(X-2)=0$
 $X-6=0$ $X-2=0$
 $X=6$ $X=2$

You-Try: Factor each polynomial.

1)
$$x^{2} + 35 = 12x$$

 $-12x - 12x$
 $x^{2} - 12x + 35 = 0$
 $x^{2} - 12x + 3$

Example: Factor the polynomial.

1)
$$4x-21=-x^2$$
 $+x^2$
 $+x^2$
 $+x^2$
 $x^2+4x-21=0$
 $0=1$
 $b=4$
 $c=-21$
 $(x+7)(x-3)=0$
 $x+7=0$
 $x-3=0$
 $x=3$
You-Try: Factor each polynomial.

1) x2+2x-15=0 a=1 b=2 c=-15

2)
$$x^{2} - 14x + 36 = 12$$

 $-12 - 12$
 $X^{2} - 14x + 24 = 0$
 $0 = 1$ $0 = -14$ $(= 24)$
 $(x - 12)(x - 2) = 0$
 $x - 12 = 0$ $x - 2 = 0$

2)
$$x^{2} - 13x = -36$$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 $+30+36$
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -36
 -3

2)
$$x^{2} - x = 42$$

 $-42 - 42$
 $x^{2} - x - 42 = 0$ $\alpha = 1$ $b = -1$ $c = -42$
 $(x - 7)(x + 6) = 0$
 $x - 7 = 0$ $x + 6 = 0$
 $x = 7$ $x = -6$

7.5 Factoring $x^2 + bx + c = 0$

Factoring out the GCF

This should always be considered first when trying to factor any polynomial - it will only become easier.

Example: Factoring out the GCF first, then factor.

1)
$$5x^{2} + 15x = -10^{4}$$

 $+10 + 10$
 $5x^{2} + 15x + 10 = 0$
 $5(x^{2} + 3x + 2) = 0$ $a = 1$ $b = 3$ $c = 2$
 $5(x+2)(x+1) = 0$ $2/1$
 $x+2 = 0$ $x+1 = 0$ $2/3$

You-Try: Factor each polynomial.

1)
$$4x^2 + 32x + 60 = 0$$
 $a = 1$ $b = 8$ $c = 15$ 2) $3x^2 + 81 = 36x$ $a = 1$ $b = -12$ $c = 27$ $4(x^2 + 8x + 15) = 0$ $5\sqrt{3}$ $3x^2 - 3(x + 81 = 0)$ $-9\sqrt{-3}$ $3(x^2 - 12x + 21) = 0$ -12 $3(x^2 - 12x + 21) = 0$ $3(x^2 - 12x + 21) = 0$ $3(x - 0)(x - 3) = 0$ $3(x - 0)(x - 3) = 0$

I can use factoring to solve real-life problems.

A farmer wants a rectangular pumpkin patch in the northeast corner of a square plot of land. The area of the pumpkin patch is 600 square meters. What is the area of the square plot of land?

7.6 Factoring $ax^2 + bx + c = 0$

Learning Target:

· I can solve a quadratic equation.

Success Criteria:

- I can factor ax2 + bx + c.
- I can use factoring to solve real-life problems.

Factoring ax2 + bx + c, when ac is Positive Check for GCF first

Example: Factor each polynomial.

1)
$$4x^2 + 13x + 3 = 0$$
 $0 = 4$ $b = 13$ $C = 3$

$$\frac{4x + 12}{4}(4x + 1) = 0$$

$$(x + 3)(4x + 1) = 0$$

$$x + 3 = 0$$

$$4x = -1$$

$$x = -0.25$$
You-Try: Factor the polynomials.

1)
$$4x^{2} + 12 = -14x$$

 $4x^{2} + 14x + 12 = 0$
 $2(2x^{2} + 7x + 6) = 0$
 $2(2x^{2} + 7x + 6) = 0$
 $2(2x + 4)(2x + 3) = 0$
 $2(x + 2)(2x + 3) = 0$
 $2(x + 2)(2x + 3) = 0$
 $2(x + 2)(2x + 3) = 0$
 $2x + 2 = 0$
 $2x + 3 = 0$

Example: Factor the polynomial. $\alpha=2$ b=-5 c=-7

1)
$$2x^2 - 5x - 7$$

 $(2x-7)(2x+2)$
 $\frac{7}{2}$
 $\frac{7}{2}$

2)
$$9x^{2} - 21x = -64$$

 $+66 + 166$
 $9x^{2} - 21x + 16 = 0$
 $3(3x^{2} - 7x + 2) = 0$
 $3(3x - 6)(3x - 1) = 0$
 $3(3x - 1)$

7.6 Factoring $ax^2 + bx + c = 0$

Factoring ax2 + bx + c when a is Negative

Example: Factor the polynomial.

1)
$$-4x^{2} - 8x = -5/$$

 $+5 + 5/$
 $-4x^{2} - 8x + 5 = 0$
 $-1(4x^{2} + 8x - 5) = 0$
 $-1(4x + 10)(4x - 2) = 0$
 $-1(2x + 5)(2x - 1) = 0$

$$2x+5=0$$
 $2x-1=0$ $2x=-5$ $x=\frac{5}{2}$ $x=\frac{1}{2}$

You-Try: Factor each polynomial.

1)
$$-2y^2 - 5y - 3$$
 $0=2$ $b=5$ $-1(2y^2 + 5y + 3)$ $c=3$ $+14x^2 + 15 = -14x^2 + 14x^2 + 14x$

I can use factoring to solve real-life problems.

The length of a rectangular game reserve is 1 mile longer than twice the width. The area of the reserve is 55 square miles. What is the width of the reserve?

$$W(2W+1) = 55$$

$$2W^{2} + W = 55$$

$$2W^{2} + W - 55 = 0$$

$$11 \times 10 \quad (2W+11)(2W-10) = 0$$

$$(2W+11)(W-5) = 0$$

$$2W+11=0 \quad W-5=0$$

$$2W=-11 \quad W=5$$

$$W=5$$

7.7 Factoring Special Products

Learning Target:

I can solve a quadratic equation.

Success Criteria:

- I can factor the difference of two squares.
- I can factor perfect square trinomials.
- I can use factoring to solve real-life problems.

I can factor the difference of two squares.

$$x^{2}-81$$
 $x^{2}+0x-81$
 $(x+9)(x-9)$

Difference of Two Squares Pattern:

$$a^2 - b^2 = (a-b)(a+b)$$

Example: Factor the polynomials.

1)
$$x^2 - 64$$
 $(\chi - \xi)(\chi + 8)$

$$(5b-6)(5b+6)$$

You-Try: Factor the polynomial.

I can factor perfect square trinomials.

$$\chi^{2} + 6\chi + 9$$
 $3\chi^{3}$ $(\chi + 3)(\chi + 3)^{2}$ $(\chi + 3)^{2}$

$$\left[\chi^2 + 2\alpha \chi + \alpha^2 = \left(\chi + \alpha \right)^2 \right]$$

$$|x^2 - 2ax + a^2 = (x-a)^2$$

7.7 Factoring Special Products

Example: Factor each polynomial.

1)
$$n^2 + 8n + 16$$
 $(n+4)^2$

$$(2x-3)^2$$

You-Try: Factor each polynomial.

1)
$$m^2 - 2m + 1$$
 $(M-1)^2$

2)
$$9z^2 + 36z + 36$$

$$(3z + 6)^2$$

Solving a Polynomial Equation

Example: Solve the polynomial equation.

1)
$$x^{2} + 3x + \frac{9}{4} = 0$$

 $\left(X + \frac{3}{2}\right)^{2} = 0$
 $X + \frac{3}{2} = 0$ $X = -\frac{3}{2}$

You-Try: Solve the polynomial equation.

1)
$$a^2 + 6a + 9 = 0$$

 $(0+3)(0+3)=0$
 $0=3$

2)
$$n^2 - 81 = 0$$

 $(n-9)(n+9) = 0$
 $[n-9][n-9]$

7.7 Factoring Special Products

I can use factoring to solve real-life problems.

A bird picks up a golf ball and drops it while flying. The function represents the height y (in feet) of the golf ball t seconds after it is dropped. The ball hits the top of a 32-foot-tall pine tree. After how many seconds does the ball hit the tree?

You-Try: What if the golf ball does not hit the pine tree. After how many seconds does the ball hit the ground?

$$0=81-16t^{2}$$

 $0=(9-4t)(9+4t)$
 $0=9-4t$ $0=9+4t$
 $-9=-4t$
 $t=2.25$
 $t=2.25$

7.8 Factoring Polynomials Completely

Learning Target:

· I can solve a quadratic equation.

Success Criteria:

- I can factor polynomials by grouping.
- I can factor polynomials completely.
- I can use factoring to solve real-life problems.

I can factor polynomials by grouping.

Used for polynomials with <u>four terms</u>. Factor the GCF out of each pair of terms. Look for and factor out the <u>common binamial</u> factor.

Example: Factor each polynomial by grouping.

1)
$$[x^3 + 3x^2] + 2x + 6$$

 $X^2(x+3) + 2(x+3)$
 $(x^2+2)(x+3)$

2)
$$4x^3 - 16x^2 - 8x + 32$$

 $4x^2(x-4) - 8(x-4)$
 $(4x^2 - 8)(x-4)$

You-Try: Factor each polynomial by grouping.

1)
$$a^3 + 3a^2 - a - 3$$

 $a^2(a+3) - 1(a+3)$
 $a^2(a+3) - 1(a+3)$

7.8 Factoring Polynomials Completely

I can factor polynomials completely.

4 specific guidelines for Factoring polynomials completely:

r speed, regularities for the services of the	
1. Factor out GCF	$3x^2 + 6x \rightarrow 3x(x+2)$
2. Look for patterns (Difference of square or perfect square	$\begin{array}{ccc} & \chi^2 - q \rightarrow (\chi - 3) & (\chi + 3) & 0R & (\chi^2 - 6\chi + 9) \\ & & & & & & & & & & & & & & & & & & $
3. Factor with ax2+bx+c x	$3x^2 - 5x - 2 - 6/5 (x - 2)(3x + 1)$
4. Factor by grouping (4 terms)	$\chi^3 - 4\chi^2 + \chi - 4 = \chi^2(\chi - 4) + 1(\chi - 4)$
	$(x^2+1)(x-4)$

Example: Factor completely.

1)
$$3x^3 + 6x^2 - 18x$$

 $3x(x^2 + 2x - 6)$

nothing multiplies to -6 and adds to 2 so completely factored

2)
$$7x^{4} - 28x^{2}$$

 $7x^{2}(x^{2} - 4)$
 $7x^{2}(x-2)(x+2)$

You-Try: Factor completely.

1)
$$2x^3 + 6x^2 - 2x$$

 $2x(x^2 + 3x - 1)$

2)
$$5x^4 - 45x^2$$

 $5x^2(x^2 - 9)$
 $5x^2(x - 3)(x + 3)$

7.8 Factoring Polynomials Completely

Solving an Equation by Factoring Completely

Example: Solve Completely.

1)
$$2x^{3} + 8x^{2} = 10x^{4}$$

 $-10x - 10x^{2}$
 $2x^{3} + 8x^{2} - 10x = 0$
 $2x(x^{2} + 4x - 5) = 0$
 $2x(x^{2} + 4x - 5) = 0$
 $2x(x + 5)(x - 1) = 0$
 $2x = 0$ $x + 5 = 0$ $x - 1 = 0$
 $x = 0$ $x = -5$ $x = 1$

You-Try: Solve Completely.

1)
$$w^{3} - 8w^{2} + 16w = 0$$

 $W(W^{2} - 8w + 16) = 0$
 $W(W - 4)(W - 4) = 0$
 $W = 0$ $W = 4$

2)
$$3x^3 + 6x^2 = 24x$$

 $-24x - 24x$
 $3x^3 + 6x^2 = 24x$
 $3x^3 + 6x^2 = 24x = 0$
 $3x(x^2 + 2x - 8) = 0$
 $3x(x^2 + 2x - 8) = 0$
 $3x(x + 4)(x - 2) = 0$
 $3x = 0$ $x + 4 = 0$ $x - 2 = 0$
 $x = 0$ $x = -4$ $x = 2$

2)
$$e^{3} - 7e^{2} = -126$$

 $+12c + 12c = 0$
 $C(c^{2} - 7c + 12c = 0)$
 $C(c^{2} - 7c + 12) = 0$
 $C(c - 4)(c - 3) = 0$
 $C = 0$
 $C = 4$