Learning Targets:

- I can use properties of radicals to simplify, solve, and graph expressions and equations.
- I can use graphs of quadratics to solve.

Success Criteria:

- I can complete the square for expressions of the form $x^2 + bx$
- I can solve quadratic equations by completing the square
- I can find and use maximum and minimum values
- I can solve real-life problems by completing the square

I can complete the square for expressions of the form $x^2 + bx$

Completing the Square: for an expression of the form $X^2 + DX$, you can add a constant C to the expression so that $X^2 + DX + C$ is a perfect square trinomial.

Step 1: Find $\frac{1}{2}$ of b, the coefficient of x.

(x+#)2 or (x-#)2

Step 2: Square the result of Step 1.

Step 3: Add the result from Step 2 to $x^2 + bx$

Step 4: Factor the trinomial

Example 1: Complete the square for the expression. Then factor the trinomial.

a)
$$x^2 + 18x$$

Step 1: $\frac{18}{2} = 9$ Step 3: $x^2 + 18x + 81$ b) $x^2 - 3x$
Step 1: $\frac{18}{2} = 9$ Step 3: $x^2 + 18x + 81$ b) $x^2 - 3x$
Step 2: $(-\frac{3}{2})^2 = \frac{9}{9}$ Step 4: $(x+9)^2$ Step 2: $(-\frac{3}{2})^2 = \frac{9}{9}$ Step 4: $(x-\frac{3}{2})^2$

You try:
$$x^2 - 4x$$

Step 1: $-\frac{4}{2}$: 2 Step 3: $x^2 - 4x + 4$ Step 1: $\frac{14}{2}$ = 7 Step 3: $x^2 + 14x + 49$
Step 2: $(-2)^2 = 4$ Step 4: $(x-2)^2$ Step 2: $7^2 = 49$ Step 4: $(x+7)^2$

I can solve quadratic equations by completing the square

Solving Quadratic Equations by Completing the Square

The method of Completing the Square can be used to solve any quadratic equation. The equation must be written in the form $X^2 + bX - d$. To keep the equation balanced, the result of Step 2 from above must be added to BOTH sides of the equation.

Example 2: Solve by Completing the Square.

a)
$$x^2 - 18x = -17$$
 $\sqrt{(x^4)^2 - 1649}$

Step 1: $\frac{18}{2} = -9$ $\sqrt{-9}$ $\sqrt{-9}$

I can find and use maximum and minimum values

Recall: The $\frac{Vertex}{vertex}$ of a quadratic function can be used to find the $\frac{maximum}{minimum}$ or value of the function. We can use Completing the Square to write a quadratic in vertex form, $\frac{y=0}{(x-h)^2+k}$, to find the max/min value.

Example 3: Find the maximum or minimum value of each quadratic function.

a)
$$y = x^{2} + 8x + 5$$

 -5 -5 $(-4,-11)$ b) $y = -x^{2} + 4x + 2$ $(2,6)$
 $y = -5 = x^{2} + 8x + 16$ $(-4,-11)$ b) $y = -x^{2} + 4x + 2$ $(-2,-6)$ $($

Max OR Min

Max OR Min

Example 4: Which of the functions could be represented by the graph? Explain.

I can solve real-life problems by completing the square

Example 5: The function $y = -16x^2 + 160x$ represents the height y (in feet) of a model rocket x seconds after it is launched.

a) Find the maximum height of the rocket. $y = -16(x^{2} - 10x + \frac{125}{2})$ -400 $y - 400 = -16(x - 5)^{2}$ +400 $y = -16(x - 5)^{2} + 400$ $y = -16(x - 5)^{2} + 400$ $y = -16(x - 5)^{2} + 400$

b) Find and interpret the axis of symmetry.

Example 6: You decide to put a rug on a floor. You want the rug to cover 100 square feet and to have a uniform border of floor visible, as shown. Find the width of the border to the nearest inch.

Learning Targets:

- I can use properties of radicals to simplify, solve, and graph expressions and equations.
- I can use graphs of quadratics to solve.

Success Criteria:

- I can solve quadratic equations using the Quadratic Formula
- I can interpret the discriminant
- I can choose efficient methods for solving quadratic equations

I can solve quadratic equations using the Quadratic Formula

Quadratic Formula:

OX2+PX+C

2-1111

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example 1: Solve the equation using the Quadratic Formula. Round your solutions to the nearest tenth, if necessary.

a)
$$x^{2} + 6x - 13 = 0$$
 $Q=1$ $b=6$ $C=-13$
 $X = -6 \pm \sqrt{62 - 4(1)(-13)}$
 $X = -6 \pm \sqrt{88}$ $X = -1.7$
 $X = -6 \pm \sqrt{88}$ $X = -1.7$

You try:
$$x^2 + 2x - 12 = 0$$
 $0 = 1$ $b = 2$ $C = -12$
 $X = -2 \pm \sqrt{2^2 - 4(1)(-12)}$
 $X = -2 \pm \sqrt{4 + 48}$
 $X = -2 \pm \sqrt{52}$
 $X = -2 \pm \sqrt{52}$

b)
$$-3x^2 + 5x - 1 = -7$$
 $a = -3$ $b = 5$ $c = 6$ $-3x^2 + 5x + 6 = 0$ $x = -5 \pm \sqrt{5^2 - 4(-3)(6)}$ $x = -5 \pm \sqrt{97}$ $x = -6$ $x = -6$

Example 2: The number y of Northern Rocky Mountain wolf breeding pairs x years since 1990 can be modeled by the function $y = 0.20x^2 + 1.8x - 3$. When were there about 77 breeding pairs of wolves?

$$7/1 = 0.2x^2 + 1.8x - 3$$

$$X = \frac{-1.8 \pm \sqrt{1.8^2 - 4(0.2)(-80)}}{2(0.2)}$$

$$X = \frac{-1.81 \cdot \sqrt{3.24 + 64}}{0.4}$$

$$X = \frac{-1.81 \cdot \sqrt{3.24 + 64}}{0.4}$$

$$X = \frac{-1.81 \cdot \sqrt{67.24}}{0.4}$$

$$A = \frac{-1.818 \cdot 2}{0.4} = \frac{6.4}{0.4} = \frac{16.4}{0.4} =$$

$$\frac{-1.8-8.2}{0A} = \frac{-10}{0.4} = 40$$

I can interpret the discriminant

<u>Discriminant</u>: In the Quadratic Formula, the expression b^2-4ac is called the discriminant. Since the discriminant is under the square root, its value allows us to see the _____ of solutions that the quadratic equation has.

 $b^2 - 4ac > 0$

 $b^2 - 4ac = 0$

 $b^2 - 4ac < 0$

2 real solutions (2 x-ints)

Example 3: Determine the number of real solutions of each quadratic.

a)
$$-x^2 + 6x + 3 = 0$$

b)
$$x^2 + 3x + 8 = 0$$

$$(e^2 - 4(-1)(3)$$

48

You try: 2x2-3x-1=0 Q=2 b=-3 C=-1

$$(-3)^2 - 4(2)(-1)$$

17

solutions 2real

You try: $6x^2 + 2x + 1 = 0$ a = 6 b = 2 c = 1 2^{2} - 4(6)(1)

no real

Example 4: Find the number of x-intercepts of each graph using the discriminant. Check your results by graphing.

a)
$$y = 2x^2 - 4x - 3$$

a)
$$y = 2x^2 - 4x - 3$$

 $0 = 2$ $b = -4$ $c = -3$

$$(-4)^2 - 4(2)(-3)$$

40

$$y = -x^2 - 8x - 18$$

b)
$$y = -x^2 - 8x - 18$$

no real solutions

I can choose efficient methods for solving quadratic equations

Overview of Methods

Method	Advantages	Disadvantages
Factoring (Lessons 7.5–7.8)	Straightforward when the equation can be factored easily	 Some equations are not factorable.
Graphing (Lesson 9.2)	Can easily see the number of solutions	 May not give exact solutions
	 Use when approximate solutions are sufficient. 	
· _	Can use a graphing calculator	
Using Square Roots (Lesson 9.3)	• Use to solve equations of the form $x^2 = d$.	Can only be used for certain equations
Completing the Square (Lesson 9.4)	 Best used when a = 1 and b is even 	May involve difficult calculations
Quadratic Formula (Lesson 9.5)	Can be used for any quadratic equation	Takes time to do calculations
	Gives exact solutions	

Example 5: Solve the equation using any method. Explain your choice of method.

b)
$$(x-2)^2 = 64$$

 $x-2=\pm 8$
 $x-2=-8$
 $x=-6$

square roots

x2=d

Example 5: Solve the equation using any method.

a)
$$x^2 - 4x - 7 = 0$$

Completing the Square

 $(x^2 - 4x = 7)$
 $(x^2 - 4x = 7)$
 $(x^2 - 4x = 7)$
 $(x^2 - 4x = 1)$
 $(x^2$

d)
$$3x^2 + x - 5 = 0$$
 $x = -1 \pm \sqrt{1 + 4(3)(-5)}$
 $x = -1 \pm \sqrt{1 + 60}$
 $x = -1 \pm \sqrt{1 + 60}$

9.6 Solving Nonlinear Systems of Equations

Learning Targets:

- I can use properties of radicals to simplify, solve, and graph expressions and equations.
- I can use graphs of quadratics to solve.

Success Criteria:

- I can solve systems of nonlinear equations by graphing
- I can solve systems of nonlinear equations algebraically
- I can approximate solutions of nonlinear systems and equations

I can solve systems of nonlinear equations by graphing

System of nonlinear equations: a system in which <u>at least</u> one of the equations is <u>nonlinear</u>. When a nonlinear system has a <u>linear</u> equation and a <u>quadratic</u> equation, the graphs can intersect in <u>zero</u>, <u>one</u>, or <u>two</u> points (solutions).

zero solutions

one solution

13

two solutions

Example 1: Solving the system by graphing.

a)
$$y = x^2 - 6x + 5$$
 $(X-5)(X-1)$ $\frac{\sqrt{(x+cx)}}{(3,-4)}$ $y = x-1$

b)
$$y = -x + 6$$

 $y = -2x^2 - x + 6$

9.6 Solving Nonlinear Systems of Equations

You try:
$$y = x^2 + 4x - 4$$

 $y = 2x - 5$

$$-\frac{4}{2}$$
 = 2

You try:
$$y = x^2 + x - 3$$

$$y = x + 1$$

solution: (-1,-7)

I can solve systems of nonlinear equations algebraically

Example 2: Solving a nonlinear system by substitution Solve each of the following systems by substitution.

a)
$$y = -5x$$

 $y = x^2 - 3x - 3$
 $-5X = X^2 - 3x - 3$
 $0 = X^2 + 2x - 3$
 $0 = (x + 3)(x - 1)$
 $X = -3$ $X = 1$

You try:
$$y = x^2 + 9$$

 $y = 9$
 $9 = \chi^2 + 9$
 $0 = \chi^2$

solutions: (2,3)

$$(-2,-1)$$

b)
$$y = -2x^{2}$$

 $y = 3x + 2$
 $-2x^{2} - 3x + 2$
 $0 = 2x^{2} + 3x + 2$
 $x = -3 \pm 3 \pm 4(2)(2)$
 $x = -3 \pm 3 \pm 4(2)(2)$
 $x = -3 \pm 3 \pm 4(2)(2)$
You try: $y = x^{2} + 4x$
 $y = -4$

$$y=-4$$
 $-4=x^2+4x$
 $0=x^2+4x+4$
 $0=(x+2)^2$
 $0=x+2$
 $x=-2$

9.6 Solving Nonlinear Systems of Equations

Example 3: Solving a nonlinear system by elimination Solve each of the following systems by elimination.

a)
$$y = x^{2} + x$$

 $y = x + 5$
 $X^{2} + X = X + 5$
 $X^{2} = 5$
 $X = \sqrt{5}$
 $X = \pm 2.24$

You try:
$$y = x^2$$

 $y = x - 3$
 $X^2 = X - 3$
 $0 = X^2 - X + 3$
 $X = \frac{1 \pm \sqrt{(1)^2 - 4(1)(3)}}{2}$
 $X = \frac{1 \pm \sqrt{1 - 12}}{2}$
 $X = \frac{1 \pm \sqrt{-11}}{2}$ [ID Solution]

b)
$$y = 2x + 5$$

 $y = -3x^2 + x - 4$
 $2x + 5 = -3x^2 + x - 4$
 $0 = -3x^2 - x - 9$
 $X = \frac{1 \pm \sqrt{(-1)^2 - 4(-3)(-9)}}{2(-3)}$
 $X = \frac{1 \pm \sqrt{107}}{-6}$ no solution

You try:
$$y = x^2 + 2x - 5$$

 $y = 2x - 1$
 $2x - 1 = x^2 + 2x - 5$
 $0 = x^2 - 4$
 $4 = x^2$
 $x - 1 = x^2$

I can approximate solutions of nonlinear systems and equations

<u>Approximating Solutions:</u> Sometimes you cannot find exact values for the solutions of a system of equations. It may be necessary to approximate the values of the solutions.

Example 4: Using your graphing calculator, approximate the solutions of the system and equation.

a)
$$y = x^2 - 2x - 5$$

 $y = 2^x + 1$
 $(-1.73, 1.31)$

b)
$$-(3^{x})+3=x^{2}-x$$

 $x \approx -1.23$
 $x = 1$

Closure: What I learned today was...