Learning Target:

• What are some of the characteristics of the graph of a quadratic function of the form $f(x) = ax^2$?

Success Criteria:

- I can graph and use quadratic functions of the form $f(x) = ax^2$
- I can identify characteristics of quadratic functions

In previous chapters, we saw what the graphs of the equations y=2x and $y=2^x$ look like:

$$y = 2x$$
 (Linear)

$$y = 2^x$$
 (Exponential)

I can graph and use quadratic functions of the form $f(x) = ax^2$

Intro Problem #1: (Do as a class): What does the graph of a QUADRATIC equation such as $y=x^2$ look like?

For each given equation, make a table of ordered pair solutions (remember to follow the order of operations PEMDAS), then plot and connect the solution points to graph the equation.

Table and Graph of $y = x^2$

X	У
-2	4
-1	
0	0
1	1
2	4

Table and Graph of $y = -x^2$

X	У
-2	-4
-1	-1
0	0
1	-1
2	-4

Observations: When the coefficient of x^2 is NEGATIVE the equation becomes $y=-x^2$, and the graph is $\sqrt{reflected}$ vertically over the x-axis. This happens is because you are taking all of the y-values for the equation $y=x^2$ (which were all positive) and multiplying them by a $y = x^2$ <u>NUMBER</u>. If there is a negative coefficient in front of the x^2 in the equation $y = \alpha x$, the graph will always open ______.

<u>Intro Problem #2:</u> (Do as a class): What effect does the coefficient a have o the equation $y=ax^2$, if a>1?

Exploration-Grahing Quadratic Equations: $y = ax^2$

Using the TI-84 graphing calculator, graph each of the following quadratic functions. Please provide an accurate sketch for each graph (on the same graph paper) and label each graph. (HINT: You can use the table key on the calculator to provide points for your sketch.) Use different colors to graph each equation.

Also, adjust your WINDOW to the following:

y-min: 10

y-max: 10

1.
$$y = x^2$$

2.
$$y = 3x^2$$
 $a = 1$

3.
$$y = \frac{1}{2}x^2$$
 a=

What do you notice about the effect the leading coefficient,

"a" has on the graph? as a gets.
larger the graph rises faster (15 narrower)

2. Complete the statement based on the above graphs:

If "|a|" is greater than 1, then the graph is ______ \mathcal{M} \tag{\mathcal{U} \tag{\mathcal{W}} \to \mathcal{W}} \tag{\mathcal{W}} \tag{\mathcal{U} \tag{\mathcal{W}} \tag{\mathcal{U}} \tag{\mathcal{W}} \tag{\mathcal{U} \tag{\mathcal{U}} \tag{\mathcal{W}} \tag{\mathcal{U}} \tag{\mathcal{U} \tag{\mathcal{U}} \tag{\mathcal{U}} \tag{\mathcal{U}} \tag{\mathcal{U} \tag{\mathcal{U}} \tag{\mathcal{U}} \tag{\mathcal{U} \tag{\mathcal{U}} \tag{\mathcal{U}} \tag{\mathcal{U} \tag{\mathcal{U}} \tag{\mathcal{U}} \tag{\mathcal{U} \tag{\mathcal{U}} \tag{\mathcal{U}

Observations: When the x^2 in the equation $y=x^2$ is multiplied by a number a>1, the graph of the equation $y = ax^2$ will be $\underline{Narrower}$ than the graph of $y = x^2$. This happens is because the previous ordered pair y-values for the equation $y = x^2$ are now ______ than before, making the graph rise more quickly. The larger we make the value of a, the $\frac{\text{NONEl}}{\text{the graph}}$ will be.

When a is a number BETWEEN 0 and 1, in other words 0 < a < 1, the graph of the equation $y = ax^2$ will be _____ than the graph of $y = x^2$. The smaller we make the value of a for 0 < a < 1, the <u>Wider</u> the graph will be.

Example 1: Graph the function: $y = \frac{3}{2}x^2$ vertex (0,0) 0.0,5, X=0 Zero at X=0 (Label Vertex, aos, zeros after the notes below!)

x	у
-2	6
-1	ap
0	0
1	બીત
2	0

I can identify characteristics of quadratic functions

Now that we have some experience graphing quadratic functions, we can begin to identify specific characteristics of the graph.

The graph of $y = ax^2$ is a U-shaped curve called a parabola

The "point" of the U (the highest point on the parabola if the graph opens \underline{UP} or lowest point if the graph opens \underline{UP}) is called the \underline{Vertex} .

Symmetry, (aos)

The $\frac{2405}{}$ of the equation are the x-values for which y=0 (which are the x-intercepts).

Identify the vertex, axis of symmetry, and zeros on the graph in Example 1.

Summary of additional characteristics from the explorations:

When a is POSITIVE, the parabola will open ______

When a is NEGATIVE, the parabola will open OOU

When 0 < |a| < 1, the parabola will be 1) der than the parabola for $y = x^2$ (when a = 1).

YOUTY Example 2: Graph the function: $y = 2x^2$ Identify the vertex, zeros and axis of symmetry. Tell whether the graph opens up or down.

x	у
-2	8
-1	2
0	0
1	2
2	8

Example 3: The graphs of the equations $y = 4x^2$ and $y = 3x^2$ are shown below. John says that the graph on the left must be the graph of $y=4x^2$ since 4 is greater than 3 and we learned in the intro that a larger value of a gives a narrower parabola. Explain why John is incorrect. Each of the

graphs has a dif

Closure: What I learned today was ...