Learning Target:

• How does the value of c affect the graph of $f(x) = ax^2 + c$?

Success Criteria:

- I can graph quadratic functions of the form $f(x) = ax^2 + c$.
- I can solve real-life problems involving functions of the form $f(x) = ax^2 + c$.

I can graph quadratic functions of the form $f(x) = ax^2 + c$

Intro Problem #1 How does the value c in the equation $y = x^2 + c$ affect the graph of the equation $y = x^2$?

Exploration:

- 1) Make a conjecture about how the graph of the equation $y = x^2 + 2$ would be different from the graph of the equation $y = x^2$. When $y = x^2$ would be different from the graph of the equation $y = x^2$.
- 2) Test your conjecture by graphing $y = x^2$ and $y = x^2 + 2$ at the same time on a graphing calculator. (Use the standard window by pressing ZOOM, then ZStandard). Sketch the graph of $y = x^2 + 2$ on the graph at the right. Describe the differences between the graphs of $y = x^2$ and $y = x^2 + 2$.

moves up a units (vertical shift)

- 3) Make a conjecture about how the graph of the equation $y = x^2 3$ would be different from the graph of the equation $y = x^2$.
- 4) Test your conjecture by graph $y = x^2$ and $y = x^2 3$ at the same time on a graphing calculator. (Use the standard window by pressing ZOOM, then ZStandard). Sketch the graph of $y = x^2 3$ on the graph at the right. Describe the differences between the graphs of $y = x^2$ and $y = x^2 + 2$.

Observations:

When a constant value is added to the x^2 in the equation $y = x^2$, in other words when x > 0 in the equation $y = x^2 + c$, the graph of the equation $y = x^2$ will shift $y = x^2$ units.

This is called a $y = x^2 + c$ upward.

When a constant value is <u>subtracted</u> from the x^2 in the equation $y = x^2$, in other words when x^2 in the equation $y = x^2 + c$, the graph of the equation $y = x^2$ will shift x^2 units.

This is called a x^2 downward.

Summary

When c>0 , the parabola for $y=ax^2$ will be shifted UP by c units.

When c < 0 , the parabola for $y = ax^2$ will be shifted DOWN by c units.

Remember: A parabola is the graph of a abdrate function.

Example 1: Without graphing, predict the following about the graph of $y = \frac{1}{2}x^2 + 3$.

Will the parabola graph be narrower or will it be wider than the graph of $y = x^2$? Wider

Will the parabola graph open upward \bigcup or open <u>downward ()</u> (20)
Will the parabola graph be shifted up or down at all? If so, how many units? \bigcup (20)
Now graph the equation $y = -\frac{1}{2}x^2 + 3$ using a table of ordered pair solutions.

X	$y = -\frac{1}{2}x^2 + 3$	У
-2	y=-{(-2)} +3	- 1
-1	y=-3(-1)2+3	2.5
0	$y = -\frac{1}{2}(0)^2 + 3$	3
1	y=-ましが+3	2,5
2	$y = -\frac{1}{2}(a) + 3$	1

What are the coordinates of the vertex? (\bigcirc , \bigcirc)

Is the vertex the Maximum point or the Minimum point of the graph? (1000000)

Draw a dark dotted line for the axis of symmetry, then give the equation of this line: $\ igwedge = igo$

Use the graph to find or estimate the zeros of the equation: x = 1.75 and x = 1.75

Use the graph to find the Domain and the Range for the equation.

(etomixorga)

For x < 0, is the graph increasing or is it decreasing?

For x > 0, is the graph increasing or is it decreasing?

You try: Without graphing, predict the following about the graph of $y = 3x^2 - 4$

Will the parabola graph be narrower or will it be wider than the graph of $y=x^2$? $\cup \cup \cup$

Will the parabola graph open upward or open downward n?

Will the parabola graph be shifted up or down at all? If so, how many units?

Graph the equation $y = 3x^2 - 4$ using a table of ordered pair solutions.

X	$y = 3x^2 - 4$	У
-2	3(-2)2-4=3(4)4=12-4=	T
-1	3(-1)2-4-3-4=	-1
0	3(0)2-4	-4
1	3(1)2-4=3-4=	-1
2	3(2)2-4=3(4)-4=12-4	8

What are the coordinates of the vertex? (0, -4)

Is the vertex the Maximum point or the Minimum point of the graph? (10West paint)

Draw a dark dotted line for the axis of symmetry, then give the equation of this line: $\chi = 0$

Use the graph to find or estimate the zeros of the equation: x = -1.25 and x = 1.25approximate

Use the graph to find the Domain and the Range for the equation.

 $\underline{\text{Domain:}} \quad \chi \in \mathcal{T} R$

y ≥ -4

For x < 0, is the graph increasing or is it decreasing?

For x>0, is the graph increasing or is it decreasing?

Example 2: Graphically find the zeros (which are also the x-intercepts of the graph) for each function. Hint: Use your calculator. Cest mate from the graph on your calculator.

Example:
$$y = 4x^2 - 36$$

$$X=3$$
 $X=-3$

 $y_{ou try}$: $f(x) = -8x^2 + 8$

I can solve real-life problems involving functions of the form $f(x) = ax^2 + c$.

Example 3: Modeling with Mathematics. The function $y = -16x^2 + 36$ represents the height (in feet) of an apple x seconds after falling from a tree. Find and interpret the x- and y- intercepts.

X-Intercepts: Graph opens down op

-1 20 Estimate X-Intercepts: -1 36 $X=\pm 1.5$ 1 20 y-intercept: y=36

Closure: What I learned today was.....